Kinesin Moves by an Asymmetric Hand-Over-Hand Mechanism
نویسندگان
چکیده
منابع مشابه
Kinesin moves by an asymmetric hand-over-hand mechanism.
Kinesin is a double-headed motor protein that moves along microtubules in 8-nanometer steps. Two broad classes of model have been invoked to explain kinesin movement: hand-over-hand and inchworm. In hand-over-hand models, the heads exchange leading and trailing roles with every step, whereas no such exchange is postulated for inchworm models, where one head always leads. By measuring the stepwi...
متن کاملKinesin walks hand-over-hand.
Kinesin is a processive motor that takes 8.3-nm center-of-mass steps along microtubules for each adenosine triphosphate hydrolyzed. Whether kinesin moves by a "hand-over-hand" or an "inchworm" model has been controversial. We have labeled a single head of the kinesin dimer with a Cy3 fluorophore and localized the position of the dye to within 2 nm before and after a step. We observed that singl...
متن کاملOn the hand-over-hand mechanism of kinesin.
We present here a simple theoretical model for conventional kinesin. The model reproduces the hand-over-hand mechanism for kinesin walking to the plus end of a microtubule. A large hindering force induces kinesin to walk slowly to the minus end, again by a hand-over-hand mechanism. Good agreement is obtained between the calculated and experimental results on the external force dependence of the...
متن کاملInhibition of kinesin motility by ADP and phosphate supports a hand-over-hand mechanism.
The motor protein kinesin couples a temporally periodic chemical cycle (the hydrolysis of ATP) to a spatially periodic mechanical cycle (movement along a microtubule). To distinguish between different models of such chemical-to-mechanical coupling, we measured the speed of movement of conventional kinesin along microtubules in in vitro motility assays over a wide range of substrate (ATP) and pr...
متن کاملDistinguishing inchworm and hand-over-hand processive kinesin movement by neck rotation measurements.
The motor enzyme kinesin makes hundreds of unidirectional 8-nanometer steps without detaching from or freely sliding along the microtubule on which it moves. We investigated the kinesin stepping mechanism by immobilizing a Drosophila kinesin derivative through the carboxyl-terminal end of the neck coiled-coil domain and measuring orientations of microtubules moved by single enzyme molecules at ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Science
سال: 2003
ISSN: 0036-8075,1095-9203
DOI: 10.1126/science.1092985